|
数值计算方法
要求:
一、 独立完成,下面已将五组题目列出,请按照学院平台指定的做题组数作答,
每人只答一组题目,多答无效,满分100分;
平台查看做题组数操作:学生登录学院平台→系统登录→学生登录→课程考试→离线考核→离线考核课程查看→做题组数,显示的数字为此次离线考核所应做哪一组题的标识;
例如:“做题组数”标为1,代表学生应作答“第一组”试题;
二、答题步骤:
1. 使用A4纸打印学院指定答题纸(答题纸请详见附件);
2. 在答题纸上使用黑色水笔按题目要求手写作答;答题纸上全部信息要求手写,包括学号、姓名等基本信息和答题内容,请写明题型、题号;
三、提交方式:请将作答完成后的整页答题纸以图片形式依次粘贴在一个Word
文档中上传(只粘贴部分内容的图片不给分),图片请保持正向、清晰;
1. 上传文件命名为“中心-学号-姓名-科目.doc”
2. 文件容量大小:不得超过20MB。
提示:未按要求作答题目的作业及雷同作业,成绩以0分记!
题目如下:
第一组:
一、计算题(共48分)
1、(24分)
取5个等距节点 ,分别用复化梯形公式和复化辛普生公式计算积分 的近似值(保留4位小数)。
2、(24分)
设 ,求
二、 论述题(共52分)
1、(30分)
已知方程组 ,其中
,
(1)列出Jacobi迭代法和Gauss-Seidel迭代法的分量形式;
(2)讨论上述两种迭代法的收敛性。
2、(22分)
数值积分公式 ,是否为插值型求积公式,为什么?又该公式的代数精度是多少?
第二组:
一、 计算题(共56分)
1、 (28分)
设有线性方程组 ,其中
(1)求 分解;
(2)求方程组的解
(3) 判断矩阵 的正定性
2、(28分)
用列主元素消元法求解方程组
二、 论述题(共44分)
1、 (28分)
已知方程组 ,其中
(1)写出该方程组的Jacobi迭代法和Gauss-Seidel迭代法的分量形式;
(2)判断(1)中两种方法的收敛性,如果均收敛,说明哪一种方法收敛更快。
2、(16分)
使用高斯消去法解线性代数方程组,一般为什么要用选主元的技术?
第三组:
一、 简述题(共50分)
1、 (28分)
已知方程组 ,其中
,
列出Jacobi迭代和Gauss-Seidel迭代法的分量形式。求出Jacobi迭代矩阵的谱半径。
2、 (22分)
用牛顿法求方程 在 之间的近似根
(1) 请指出为什么初值应取2?
(2) 请用牛顿法求出近似根,精确到0.0001。
二、计算题(29分)
用反幂法求矩阵 的对应于特征值 的特征向量
三、分析题(21分)
设
(1)写出解 的牛顿迭代格式
(2)证明此迭代格式是线性收敛的
第四组:
计算题
1. 写出求解线性代数方程组
的Gauss-Seidel迭代格式,并分析此格式的敛散性。(28分)
2.
(1)写出以0,1,2为插值节点的二次Lagrange插值多项式 ;
(2)以0,1,2为求积节点,建立求积分 的一个插值型求积公式,并推导此求积公式的截断误差。(41分)
3. 利用Gauss变换阵,求矩阵 的LU分解。(要求写出分解过程)
(31分)
第五组:
一、计算题(共76分)
1、(22分)用高斯消元法求解下列方程组
2、(31分)
用雅可比方法求矩阵 的特征值和特征向量
3、(23分)
求过点(-1,-2),(1,0)(3,-6),(4,3)的三次插值多项式
二、简述题(24分)
写出梯形公式和辛卜生公式,并用来分别计算积分
|
|