|
请同学及时保存作业,如您在20分钟内不作操作,系统将自动退出。
浙大10秋学期《概率论与数理统计》在线作业
试卷总分:100 测试时间:--
单选题 判断题
一、单选题(共 40 道试题,共 80 分。)V 1. 下列数组中,不能作为随机变量分布列的是( ).A. 1/3,1/3,1/6,1/6
B. 1/10,2/10,3/10,4/10
C. 1/2,1/4,1/8,1/8
D. 1/3,1/6,1/9,1/12
满分:2 分
2. 设随机变量X和Y相互独立,X的概率分布为X=0时,P=1/3;X=1时,P=2/3。Y的概率分布为Y=0时,P=1/3;Y=1时,P=2/3。则下列式子正确的是( )A. X=Y
B. P{X=Y}=1
C. P{X=Y}=5/9
D. P{X=Y}=0
满分:2 分
3. 设随机变量X服从泊松分布,且P{X=1}=P{X=2},则E(X)=( )A. 2
B. 1
C. 1.5
D. 4
满分:2 分
4. 设随机变量X~B(n,p),已知EX=0.5,DX=0.45,则n,p的值是()。A. n=5,p=0.3
B. n=10,p=0.05
C. n=1,p=0.5
D. n=5,p=0.1
满分:2 分
5. 设A,B为任意两事件,且A包含于B(不等于B),P(B)≥0,则下列选项必然成立的是A. P(A)=P(A∣B)
B. P(A)≤P(A∣B)
C. P(A)>P(A∣B)
D. P(A)≥P(A∣B)
满分:2 分
6. 设随机变量X和Y独立同分布,记U=X-Y,V=X+Y,则随机变量U与V必然( )A. 不独立
B. 独立
C. 相关系数不为零
D. 相关系数为零
满分:2 分
7. 从0到9这十个数字中任取三个,问大小在中间的号码恰为5的概率是多少?A. 1/5
B. 1/6
C. 2/5
D. 1/8
满分:2 分
8. 设两个相互独立的随机变量X,Y方差分别为6和3,则随机变量2X-3Y的方差为( )A. 51
B. 21
C. -3
D. 36
满分:2 分
9. 下列哪个符号是表示必然事件(全集)的A. θ
B. δ
C. Ф
D. Ω
满分:2 分
10. 事件A与B互为对立事件,则P(A+B)=A. 0
B. 2
C. 0.5
D. 1
满分:2 分
11. 从a,b,c,d,...,h等8个字母中任意选出三个不同的字母,则三个字母中不含a与b的概率( )A. 14/56
B. 15/56
C. 9/14
D. 5/14
满分:2 分
12. 一个工人照看三台机床,在一小时内,甲、乙、丙三台机床需要人看管的概率分别是0.8,0.9和0.85,求在一小时内没有一台机床需要照看的概率( )A. 0.997
B. 0.003
C. 0.338
D. 0.662
满分:2 分
13. 设X,Y为两个随机变量,已知cov(X,Y)=0,则必有()。A. X与Y相互独立
B. D(XY)=DX*DY
C. E(XY)=EX*EY
D. 以上都不对
满分:2 分
14. 已知随机变量X服从二项分布,且E(X)=2.4,D(X)=1.44,则二项分布的参数n,p的值为( )A. 4,0.6
B. 6,0.4
C. 8,0.3
D. 24,0.1
满分:2 分
15. 从5双不同号码的鞋中任取4只,求4只鞋子中至少有2只是一双的概率 ()A. 2/3
B. 13/21
C. 3/4
D. 1/2
满分:2 分
16. 设A、B互不相容,且P(A)>0,P(B)>0则下列选项正确的是()。A. P(B/A)>0
B. P(A/B)=P(A)
C. P(A/B)=0
D. P(AB)=P(A)*P(B)
满分:2 分
17. 已知全集为{1,3,5,7},集合A={1,3},则A的对立事件为A. {1,3}
B. {1,3,5}
C. {5,7}
D. {7}
满分:2 分
18. 设两个随机变量X与Y相互独立且同分布;P{X=-1}=P{Y=-1}=1/2,P{X=1}=P{Y=1}=1/2,则下列各式中成立的是()。A. P{X=Y}=1/2
B. P{X=Y}=1
C. P{X+Y=0}=1/4
D. P{XY=1}=1/4
满分:2 分
19. 设随机变量X和Y的方差存在且不等于0,则D(X+Y)=D(X)+D(Y)是X和Y( )A. 不相关的充分条件,但不是必要条件
B. 独立的充分条件,但不是必要条件
C. 不相关的充分必要条件
D. 独立的充要条件
满分:2 分
20. 对于任意两个事件A与B,则有P(A-B)=().A. P(A)-P(B)
B. P(A)-P(B)+P(AB)
C. P(A)-P(AB)
D. P(A)+P(AB)
满分:2 分
21. 电灯泡使用时数在1000小时以上的概率为0.2,求三个灯泡在1000小时以后最多有一个坏了的概率( )A. 0.7
B. 0.896
C. 0.104
D. 0.3
满分:2 分
22. 设X与Y是相互独立的两个随机变量,X的分布律为:X=0时,P=0.4;X=1时,P=0.6。Y的分布律为:Y=0时,P=0.4,Y=1时,P=0.6。则必有( )A. X=Y
B. P{X=Y}=0.52
C. P{X=Y}=1
D. P{X#Y}=0
满分:2 分
23. 当总体有两个位置参数时,矩估计需使用()A. 一阶矩
B. 二阶矩
C. 一阶矩或二阶矩
D. 一阶矩和二阶矩
满分:2 分
24. 有两批零件,其合格率分别为0.9和0.8,在每批零件中随机抽取一件,则至少有一件是合格品的概率为A. 0.89
B. 0.98
C. 0.86
D. 0.68
满分:2 分
25. 设A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件为 ( )A. “甲种产品滞销或乙种产品畅销”;
B. “甲种产品滞销”;
C. “甲、乙两种产品均畅销”;
D. “甲种产品滞销,乙种产品畅销”.
满分:2 分
26. 已知P(A)=0.3,P(B)=0.4,P(AB)=0.2,则P(B|A)=________.A. 1/3
B. 2/3
C. 1/2
D. 3/8
满分:2 分
27. 对于任意两个随机变量X和Y,若E(XY)=EX*EY,则()。A. D(XY)=DX*DY
B. D(X+Y)=DX+DY
C. X和Y相互独立
D. X和Y互不相容
满分:2 分
28. 在1,2,3,4,5这5个数码中,每次取一个数码,不放回,连续取两次,求第1次取到偶数的概率( )A. 3/5
B. 2/5
C. 3/4
D. 1/4
满分:2 分
29. 如果随机变量X和Y满足D(X+Y)=D(X-Y),则下列式子正确的是( )A. X与Y相互独立
B. X与Y不相关
C. DY=0
D. DX*DY=0
满分:2 分
30. 一口袋装有6只球,其中4只白球、2只红球。从袋中取球两次,每次随机地取一只。采用不放回抽样的方式,取到的两只球中至少有一只是白球的概率( )A. 4/9
B. 1/15
C. 14/15
D. 5/9
满分:2 分
31. 一种零件的加工由两道工序组成,第一道工序的废品率为p,第二刀工序的废品率为q,则该零件加工的成品率为( )A. 1-p-q
B. 1-pq
C. 1-p-q+pq
D. (1-p)+(1-q)
满分:2 分
32. 甲、乙两人独立的对同一目标各射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率是()。A. 0.6
B. 5/11
C. 0.75
D. 6/11
满分:2 分
33. 已知随机事件A 的概率为P(A)=0.5,随机事件B的概率P(B)=0.6,且P(B︱A)=0.8,则和事件A+B的概率P(A+B)=( )A. 0.7
B. 0.2
C. 0.5
D. 0.6
满分:2 分
34. 设A,B,C是两两独立且不能同时发生的随机事件,且P(A)=P(B)=P(C)=x,则x的最大值为()。A. 1/2
B. 1
C. 1/3
D. 1/4
满分:2 分
35. 一部10卷文集,将其按任意顺序排放在书架上,试求其恰好按先后顺序排放的概率( ).A. 2/10!
B. 1/10!
C. 4/10!
D. 2/9!
满分:2 分
36. 设随机变量X~N(0,1),Y=3X+2,则Y服从()分布。A. N(2,9)
B. N(0,1)
C. N(2,3)
D. N(5,3)
满分:2 分
37. X服从[0,2]上的均匀分布,则DX=( )A. 1/2
B. 1/3
C. 1/6
D. 1/12
满分:2 分
38. 袋中有4个白球,7个黑球,从中不放回地取球,每次取一个球.则第二次取出白球的概率为 ( )A. 4/10
B. 3/10
C. 3/11
D. 4/11
满分:2 分
39. 设g(x)与h(x)分别为随机变量X与Y的分布函数,为了使F(x)=ag(x)+bh(x)是某一随机变量的分布函数,在下列各组值中应取( )A. a=3/5 b=-2/5
B. a=-1/2 b=3/2
C. a=2/3 b=2/3
D. a=1/2 b=-2/3
满分:2 分
40. 现考察某个学校一年级学生的数学成绩,现随机抽取一个班,男生21人,女生25人。则样本容量为( )A. 2
B. 21
C. 25
D. 46
满分:2 分 |
|