|
一、单选题(共 5 道试题,共 40 分。)V 1. 利用单纯形法求解线性规划标准型时,每做一次换基迭代,都能保证它相应的目标函数值必为( )。
A. 不增大
B. 增大
C. 减少
D. 不减少
满分:8 分
2. 两阶段法和大M法是用来( )的。
A. 确定初始基可行解
B. 简化计算
C. 使该模型标准化
D. 处理人工变量
满分:8 分
3. 在线性规划问题的最优解中,如果约束条件取严格不等式,则其对应的对偶变量( )。
A. 为零
B. 非零
C. 非负
D. 非正
满分:8 分
4. 线性规划问题的变量个数与其对偶问题的( )相等。
A. 变量目标函数
B. 变量约束条件
C. 约束条件个数
D. 不确定
满分:8 分
5. 满足线性规划问题所有约束条件的解称为( )。
A. 可行解
B. 基本可行解
C. 无界解
D. 最优解
满分:8 分
二、判断题(共 15 道试题,共 60 分。)V 1. 线性规划问题中非基变量的检验数永远为零。
A. 错误
B. 正确
满分:4 分
2. 某线性规划问题有且仅有有限个(大于等于3)最优解。
A. 错误
B. 正确
满分:4 分
3. 若某线性规划的原问题具有无界解,则其对偶问题无可行解。
A. 错误
B. 正确
满分:4 分
4. 线性规划对偶问题的对偶问题一定是原问题。
A. 错误
B. 正确
满分:4 分
5. 当线性规划问题中添加了人工变量,问题满足最优性条件时基变量仍含有人工变量,则表明问题无可行解。
A. 错误
B. 正确
满分:4 分
6. 图解法同单纯形法虽然求解的形式不同,但从几何意义上解释,两者是一致的。
A. 错误
B. 正确
满分:4 分
7. 若某线性规划模型的可行域非空有界,则其顶点中必存在最优解。
A. 错误
B. 正确
满分:4 分
8. 若某线性规划问题存在最优解,最优解一定对应可行域边界上的一个点。
A. 错误
B. 正确
满分:4 分
9. 线性规划的原问题与其对偶问题之间存在着互为对偶的关系。
A. 错误
B. 正确
满分:4 分
10. 若线性规划的原问题无可行解时,其对偶问题无可行解。
A. 错误
B. 正确
满分:4 分
11. 线性规划模型中增加一个约束条件,可行域的范围一定缩小,减少一个约束条件,可行域的范围一定扩大。
A. 错误
B. 正确
满分:4 分
12. 若某线性规划问题的可行域是空集,则表明存在矛盾的约束条件。
A. 错误
B. 正确
满分:4 分
13. 线性规划问题的基本类型是“min”型问题。
A. 错误
B. 正确
满分:4 分
14. 用单纯形法求解线性规划问题时,若最终表上非基变量的检验数均严格小于零,则该模型一定有惟一的最优解。
A. 错误
B. 正确
满分:4 分
15. 线性规划问题的最优解必须是满足约束条件要求,并使目标函数达到最优值。
A. 错误
B. 正确
满分:4 分
如果资料还未上传请加QQ:1306998094 谢谢 |
|