|
谋学网: www.mouxue.com 主要提供奥鹏作业资料,奥鹏在线作业资料,奥鹏离线作业资料和奥鹏毕业论文以及其他各远程教育作业代写服务,致力打造中国最专业远程教育辅导社区。
, W# g/ j; Y' Z6 u h; D+ J
" y8 r: y6 k1 S! s+ n& u一、单选题(共 18 道试题,共 54 分。)V 1. 原问题与对偶问题的最优( )相同。0 v! q1 `2 z2 l" R+ K( a/ S
A. 解
( p' e, I: N$ Q6 s6 ^B. 目标值
$ R$ l; O5 t2 XC. 解结构
; V) N, O% H! }( p+ }5 {D. 解的分量个数0 q* `$ i! [4 W7 B( R( n
满分:3 分
/ S3 Y; J8 N6 A% _# w4 s2. 原问题的第i个约束方程是“=”型,则对偶问题的变量 是) p5 t' M+ j' m* F! y! Y% g$ E
A. 多余变量
# W* `( A8 R8 u% QB. 自由变量7 w7 R- M0 l6 J3 q! |! ?
C. 松弛变量4 @( p$ E$ m. B* `. J8 U" E3 O
D. 非负变量9 p6 I; w9 E2 H. I
满分:3 分
3 M( C u# C* M3 K3. 若原问题是一标准型,则对偶问题的最优解值就等于原问题最优表中松弛变量的( )
4 F4 ~" U' V. ?0 n3 ~A. 值% h* s9 j5 c7 z( M/ k
B. 个数
& E- {; A/ B ?/ G4 QC. 机会费用
" X6 f! |! @. M1 V0 OD. 检验数
6 m6 K, ?! \+ A* \! K+ u! J2 Z 满分:3 分% {2 N! z" b }0 y3 f' r$ V% i# r
4. 若原问题是求目标最小,则对偶问题的最优解值就等于原问题最优表中剩余变量的( )
. O& ]- `) V% A2 ZA. 机会费用6 b! d }. ]: a: Z- ~0 y
B. 个数" E8 b: S7 A8 C$ o2 `
C. 值
4 {; n- C) a: r+ fD. 机会费用的相反数
1 B" P: W6 t3 i 满分:3 分4 T6 k4 M6 p8 ^/ ?, M( H; V0 p
5. 线性规划问题标准型中 (i=1,2,……n)必须是
9 R7 d0 K" b( l) }; \$ KA. 正数% K: X k3 ^& X2 g6 i
B. 非负数
+ n: Q }- u( m3 fC. 无约束/ B3 K2 y3 W! {, {
D. 非零
2 e4 x* e( Z. l4 W& K 满分:3 分
9 V( Y0 t# o+ D9 Y. ^3 s" t+ [! a6. 若G中不存在流f增流链,则f为G的( )8 X7 E& u" C1 u6 h
A. 最小流
; v% e" A: q/ Q* {- }B. 最大流
1 n3 }3 k f# G5 o) {C. 最小费用流
5 y2 k, U( H# m0 S1 lD. 无法确定- U/ g+ \! p/ I
满分:3 分, t; j" F" h9 B/ x
7. 线性规划问题若有最优解,则一定可以在可行域的 ( )上达到。
2 B$ d1 h- `. W( _4 }$ CA. 内点! G$ ]9 l" _' X2 x- P
B. 外点
5 i- j+ l. k, x, oC. 极点
0 }8 _, Y) T# V, K# Z( yD. 几何点
+ n3 u/ M; L9 A) y' i3 i 满分:3 分6 M" o5 `6 f# N4 r1 W( Z
8. 若运输问题已求得最优解,此时所求出的检验数一定是全部: Y2 _2 _# R$ n0 b( I
A. 大于或等于零' G. V8 _4 g* ?
B. 大于零
! E! M5 _# [3 q6 ?( QC. 小于零# N; c1 G7 {* a, I- S3 |1 d
D. 小于或等于零* F: |( Z6 v3 P9 X: A" g
满分:3 分" k9 m" N" v% ^; i
9. 若f 是G的一个流,K为G的一个割,且Valf=CapK,则K一定是( )6 O4 c( P% O) Y7 }( p) d
A. 最小割
; M* y4 u0 N q' ^1 \% kB. 最大割8 v7 J R4 G% w6 w: V* I3 j! ~
C. 最小流
6 T( [! x3 Q$ f0 f, FD. 最大流
3 o1 O( T: N3 ^/ D$ A 满分:3 分8 ~! I* f( i* G
10. 在运输方案中出现退化现象,是指数字格的数目( )
% m7 N: C" D8 y$ bA. 等于m+n
% I* {# g, X. G XB. 大于m+n-1
$ C; a8 u6 r/ {. {- b9 OC. 小于m+n-19 T* C8 f" f7 H/ b
D. 等于m+n-1
$ x) C# |" r4 y) N' n 满分:3 分3 D' a/ z- d) g5 w# m N+ S
11. 若树T有n个顶点,那么它的边数一定是( )- [& H8 f1 x) K1 N
A. n+2& K" B/ i2 w* m7 t& r, e
B. n
* {9 C8 A8 _" y1 }C. n+18 S& h* A: k& l6 F9 l
D. n-16 B m8 N8 l0 u6 Z5 b
满分:3 分/ S7 X4 [4 u5 X
12. 若一个闭链C除了第一个顶点和最后一个顶点相同外,没有相同的顶点和相同的边,则该闭链C称为 ( )8 |- p9 l6 e7 ~; F% ^$ A
A. 初等链8 H c" d: s8 F- v P/ s) T0 R
B. 圈
" y4 r! [5 y2 I# e6 k4 w1 ]) v8 S' uC. 回路3 q/ `# N2 I) b5 V
D. 饱和链
! D! }' u5 ~9 a7 m6 ?, v; I 满分:3 分
1 n) o- O, P# W, ]' P. d13. 规划的目的是 Z( N- j8 H+ }5 ~# z5 ]4 |
A. 合理利用和调配人力、物力,以取得最大收益。
! ^6 S' Y9 O$ f* a& O- RB. 合理利用和调配人力、物力,使得消耗的资源最少% U- t; k+ V. b
C. 合理利用和调配现有的人力、物力,消耗的资源最少,收益最大。4 J- x; g! [, u
D. 合理利用和调配人力、物力,消耗的资源最少,收益最大。& z4 N- ]- D5 m$ T" O: }( Z
满分:3 分
+ l3 Q; f/ j/ @! h1 x1 x4 B14. 若f*为满足下列条件的流:Valf*=max{Valf |f为G的一个流},则称f*为G的 ( )+ m, _$ W3 @( o, h* ^% S3 r( V5 \" v
A. 最小值
D4 P1 G: l; j9 N8 H2 e5 VB. 最大值' s5 i: t% \! ^% S% c2 X2 j4 k
C. 最大流
P7 o4 n6 F& wD. 最小流& Z* k3 a6 h8 G1 A _2 c8 d
满分:3 分
0 D7 Q' s- Q8 o* M+ S, S15. 对偶单纯型法与标准单纯型法的主要区别是每次迭代的基变量都满足最优检验但不完全满足
1 |- I* a) E; z3 e, v4 @0 w+ }A. 等式约束2 }2 Z! @0 u. H- w5 i
B. “≤”型约束+ w( R- P8 E! v0 h% @: _" g9 P& `
C. “≥”型约束" e# Z: V+ D8 B3 m4 f; v3 ~/ g
D. 非负约束6 A9 n" i/ y: Y2 o5 ^
满分:3 分
- \/ `6 @5 z) d" T( k* ~8 w) j9 h16. 当线性规划问题的一个基解满足下列哪项要求时称之为一个可行基解
3 H: y! B7 o. R! h$ ~3 U# \A. 大于0
& d4 Z) q6 S% `# N: dB. 小于0
5 I$ v3 f2 I2 m) ZC. 非负
# C8 a* Y- ^4 g0 ]D. 非正. _$ U2 C3 M! l; u
满分:3 分
* ]% u+ ?- q3 A2 q* m9 E17. 规划的目的是( )# U8 u6 X, A3 |9 j+ ~) R* j
A. 合理利用和调配人力、物力,以取得最大收益。
: J1 F8 P8 `6 a1 N* R2 c3 aB. 合理利用和调配人力、物力,使得消耗的资源最少。, i% E" w# A( A0 a+ f! q
C. 合理利用和调配现有的人力、物力,消耗的资源最少,收益最大。
3 k! f7 l' B5 i. \0 R1 K) Y! E- G. HD. 合理利用和调配人力、物力,消耗的资源最少,收益最大。+ @& d- M9 E# w$ c
满分:3 分
! z( `8 d6 h! D4 b% W; g7 d' D18. 基本可行解中的非零变量的个数小于约束条件数时,该问题可求得( )
( v! ?2 }5 V# e) n$ n6 B+ N% X, wA. 基本解2 { ]; x+ u5 @6 u% v
B. 退化解+ [" J8 c9 |: z- V2 @/ h8 Q
C. 多重解5 K6 v3 U3 K7 d3 X
D. 无解
2 B$ l+ I% X! [/ s0 o8 c 满分:3 分
# I/ q) O& H. C2 A5 X* k$ {; _$ H& `) h9 N
二、多选题(共 10 道试题,共 30 分。)V 1. 求解约束条件为“≥”型的线性规划、构造基本矩阵时,可用的变量有 ( ): F* \3 A. H, f/ Y4 D) K
A. 人工变量# k) ]$ ~& y7 w! X; X
B. 松弛变量# V a6 c/ W. |; R; z% P7 `1 j% h
C. 负变量% t# a& }2 F" a( N3 \! A: b
D. 剩余变量
. Z. y: j0 F* ?5 ^1 W) c3 ?E. 稳态变量
- U' V7 c6 b7 P. }4 f! m9 |8 G 满分:3 分, C3 \# c% H( n# ^. c5 ~( L \
2. 就课本范围内,解有“≥”型约束方程线性规划问题的方法有
6 U' u( g# ?! ]: B7 t( f; e; QA. 大M法5 v I3 V, q$ T7 i4 N n
B. 两阶段法
: _5 ~1 W& H6 ~ H$ BC. 标号法
0 Z7 y( l( ?4 m/ X5 m8 c% e7 HD. 统筹法. a5 ~% n; `9 V8 d* Y
E. 对偶单纯型法
- C+ i7 Z7 S! H+ v3 V2 ~) n- @ 满分:3 分- F z9 h% T. J7 k; |- ~
3. 求运输问题表上作业法中求初始基本可行解的方法一般有. ~% ^! u, ]% R5 s q5 W9 c
A. 西北角法
: o3 ~# z. ^8 o" E2 z1 eB. 最小元素法6 {7 U6 U8 `0 L- F2 x
C. 单纯型法
4 A1 E, ^- t9 O' N: B; {D. 伏格尔法% W A) B( g1 R
E. 位势法
. l% j' N# t2 i E0 i 满分:3 分
0 Y% e7 i! }. h4. 解线性规划时,加入人工变量的主要作用是 ( ). Y( T" X Y$ r! w6 F- J$ o: Q
A. 求初始基本可行解
! Z0 q: r: ~/ OB. 化等式约束
. K% j; s% J( k: X9 a2 zC. 求可行域8 p+ h7 r) b$ q7 V
D. 构造基本矩阵
3 P6 n, [# s$ v/ D; ]/ W) f/ t, pE. 求凸集$ f# p5 g. p- H9 R) g
满分:3 分
0 m* K9 J( d1 J8 c4 x8 k. ?5. 线性规划问题的一般模型中可以出现下面几种约束( ) i# l8 w- u0 h' Z
A. =/ A1 F! m7 X( d& _6 T1 O8 [" K
B. ≥
/ p) _" u/ i5 }: T/ K# K- y" IC. ≤7 \( o+ Q7 W, T
D. ⊕* r( H1 |/ y8 a" \; l( H( R
E. ∝ B) S, p+ l Z2 R
满分:3 分
! ?0 `8 Q9 m! D) f4 r6. 化一般规划模型为标准型时,可能引入的变量有 ( )5 `* ]! \ X: l5 \0 n
A. 松弛变量9 l' c$ z3 _% `: `* C0 z
B. 剩余变量
/ p" o' V# D. `2 z3 CC. 非负变量
& b* f) ]- i0 ~9 x! w( sD. 非正变量2 Q+ M" }- o& \: r3 N
E. 自由变量
0 k6 b1 U2 `* Q0 A% F4 R3 ? 满分:3 分
8 j. |; r0 h& K& V/ P7. 线性规划问题的主要特征有 ( )3 D1 O5 |+ t. s1 {& h
A. 目标是线性的
, Q; _# U I- FB. 约束是线性的
2 q9 e1 I9 `5 B9 m* @ g- z! U( cC. 求目标最大值5 i: h2 z! F, i) y$ `7 A- F% R
D. 求目标最小值
6 U6 r+ X9 m6 e- @E. 非线性! K! o# A5 J1 Y/ D+ R
满分:3 分/ T+ }; P! x, ~5 S# K
8. 一般情况下,目标函数系数为零的变量有( )
+ d) U, T1 D$ W+ O3 t2 nA. 自由变量9 H4 M p5 X7 {) `: y4 `% ?* V
B. 松弛变量
# Q! g4 ?) i& E% I" pC. 人工变量: Y; t3 K+ {( U: c( o; {
D. 剩余变量: a' ?3 d/ X& b( a8 H9 q* a
E. 自变量
( E1 q, }7 ]0 J4 x' S5 E6 X* t 满分:3 分; D9 Z* e8 n' U) C3 y
9. 表上作业法中确定换出变量的过程有
9 ?- J% ^& C! [6 M( p% I7 J! YA. 判断检验数是否都非负9 i4 R1 ]8 k# [- _8 r+ ^
B. 选最大检验数& V7 g* |' ^1 Z
C. 确定换出变量
9 w& Y! Q# Z- n8 M9 wD. 选最小检验数% m; \- n, B5 ]1 \2 c
E. 确定换入变量0 L/ m, k- \0 g4 T0 f, P1 n+ }. u! A$ a
满分:3 分+ v( o1 {" K- f4 K7 V
10. 线性规划问题的一般模型中可以出现下面几种约束1 H2 e- }( K: B s
A. =7 p8 e5 j' M/ O" D2 g
B. ≥
8 m( b. f1 A) `( p. j: G" ?C. ≤+ n8 w/ X1 A+ [; g
D. ⊕
- d: \ U( B+ c. G$ L! c/ ~E. ∝* p0 I) L/ R0 @. l) Q# M
满分:3 分
# H3 D5 X2 M' `1 ^( T6 \
}/ n0 H) x& e/ b" [; ]三、判断题(共 8 道试题,共 16 分。)V 1. 线性规划问题的每一个基本解对应可行域上的一个顶点。
5 `8 G8 _$ B3 pA. 错误
- w6 f& S4 r8 P$ A; T5 J6 GB. 正确* H' ^5 i: P* j8 X4 R
满分:2 分
4 m/ d& i ~. K+ o- ]8 l2. 线性规划问题的一般模型中不能有等式约束。
9 [5 k- |0 B; m# ~5 N1 nA. 错误 |2 t7 A9 {' `. S
B. 正确
0 o6 I; d! v# G x/ h) R/ t 满分:2 分
, a. r0 _3 i/ a3. 产地产量与销地销量相等的运输问题是产销平衡运输问题。
1 m c6 n( j! s: S; @A. 错误$ ?- D9 [" O9 _
B. 正确4 L" M8 _7 M7 _6 u# R8 Z7 w2 r Z' {
满分:2 分
0 e6 w( U! Q1 ?4 a+ J6 |' _4. 对偶问题的对偶一定是原问题。
% C# G( U% t% X1 A/ hA. 错误% i5 O1 A/ a k: [# Y$ X( ~
B. 正确
% a; F9 v+ R; y4 y 满分:2 分, \5 X6 ? W9 Q2 b4 `+ x# b
5. 对于一个动态规划问题,应用顺推或逆解法可能会得出不同的最优解。* k0 x! `1 {1 y' N: |
A. 错误 l9 L; ~3 o% l2 K% a/ r/ g9 L" T$ o
B. 正确
& z; D9 M# D1 B! {; f1 Y4 y 满分:2 分0 P% K0 h% H- W6 ?7 d4 t& z0 z
6. 若原问题可行,对偶问题不可行,则原问题无界。
" P' f8 g8 \9 u4 v) R7 e9 |A. 错误1 I% M" ^% n) v8 R
B. 正确
# ~$ w. }. f: z3 } k 满分:2 分% I6 w: N y" i, W2 y
7. 线性规划问题的基本解就是基本可行解。
' l8 X8 D6 g9 U: b7 o$ xA. 错误
; {1 g0 h3 B( v0 d4 SB. 正确; _1 P* S3 R9 s, n9 I
满分:2 分' w9 S9 L( E* J$ j! G' j0 U
8. 同一问题的线性规划模型是唯一。" S" x) u& K5 o* k1 g7 z3 y
A. 错误% j2 s6 M" r- i% R( B. o4 t6 _
B. 正确
T: j" I. V( X 满分:2 分
$ Z! R0 O$ Z! T, [( o$ Y. {% o9 W$ b
: d- t1 l8 ] K. S谋学网: www.mouxue.com 主要提供奥鹏作业资料,奥鹏在线作业资料,奥鹏离线作业资料和奥鹏毕业论文以及其他各远程教育作业代写服务,致力打造中国最专业远程教育辅导社区。 |
|