|
华师《概率统计A》在线作业
一、单选题(共 25 道试题,共 50 分。) V 1. 设X,Y为两个随机变量,则下列等式中正确的是
A. E(X+Y)=E(X)+E(Y)
B. D(X+Y)=D(X)+D(Y)
C. E(XY)=E(X)E(Y)
D. D(XY)=D(X)D(Y)
2. 设服从正态分布的随机变量X的数学期望和均方差分别为10和2,则变量X落在区间(12,14)的概率为( )
A. 0.1359
B. 0.2147
C. 0.3481
D. 0.2647
3. 某车队里有1000辆车参加保险,在一年里这些车发生事故的概率是0.3%,则这些车在一年里恰好有10辆发生事故的概率是( )
A. 0.0008
B. 0.001
C. 0.14
D. 0.541
4. 投掷n枚骰子,则出现的点数之和的数学期望是
A. 5n/2
B. 3n/2
C. 2n
D. 7n/2
5. 一口袋装有6只球,其中4只白球、2只红球。从袋中取球两次,每次随机地取一只。采用不放回抽样的方式,取到的两只球中至少有一只是白球的概率( )
A. 4/9
B. 1/15
C. 14/15
D. 5/9
6. 当总体有两个位置参数时,矩估计需使用()
A. 一阶矩
B. 二阶矩
C. 一阶矩或二阶矩
D. 一阶矩和二阶矩
7. 射手每次射击的命中率为为0.02,独立射击了400次,设随机变量X为命中的次数,则X的方差为( )
A. 6
B. 8
C. 10
D. 20
8. 200个新生儿中,男孩数在80到120之间的概率为( ),假定生男生女的机会相同
A. 0.9954
B. 0.7415
C. 0.6847
D. 0.4587
9. 设两个相互独立的随机变量X,Y方差分别为6和3,则随机变量2X-3Y的方差为( )
A. 51
B. 21
C. -3
D. 36
10. 甲乙两人投篮,命中率分别为0.7,0.6,每人投三次,则甲比乙进球数多的概率是
A. 0.569
B. 0.856
C. 0.436
D. 0.683
11. 如果X与Y这两个随机变量是独立的,则相关系数为( )
A. 0
B. 1
C. 2
D. 3
12. 设随机变量X和Y独立同分布,记U=X-Y,V=X+Y,则随机变量U与V必然( )
A. 不独立
B. 独立
C. 相关系数不为零
D. 相关系数为零
13. 电话交换台有10条外线,若干台分机,在一段时间内,每台分机使用外线的概率为10%,则最多可装( )台分机才能以90%的把握使外线畅通
A. 59
B. 52
C. 68
D. 72
14. 设随机变量X服从正态分布,其数学期望为10,均方差为5,则以数学期望为对称中心的区间( ),使得变量X在该区间内概率为0.9973
A. (-5,25)
B. (-10,35)
C. (-1,10)
D. (-2,15)
15. 设10件产品中只有4件不合格,从中任取两件,已知所取两件产品中有一件是不合格品,另一件也是不合格品的概率为
A. 1/5
B. 1/4
C. 1/3
D. 1/2
16. 设随机变量X与Y相互独立,D(X)=2,D(Y)=4,D(2X-Y)=
A. 12
B. 8
C. 6
D. 18
17. 点估计( )给出参数值的误差大小和范围
A. 能
B. 不能
C. 不一定
D. 以上都不对
18. 一批10个元件的产品中含有3个废品,现从中任意抽取2个元件,则这2个元件中的废品数X的数学期望为( )
A. 3/5
B. 4/5
C. 2/5
D. 1/5
19. 如果随机变量X和Y满足D(X+Y)=D(X-Y),则下列式子正确的是( )
A. X与Y相互独立
B. X与Y不相关
C. DY=0
D. DX*DY=0
20. 设随机变量X服从泊松分布,且P{X=1}=P{X=2},则E(X)=( )
A. 2
B. 1
C. 1.5
D. 4
21. 设随机变量X~B(n,p),已知EX=0.5,DX=0.45,则n,p的值是()。
A. n=5,p=0.3
B. n=10,p=0.05
C. n=1,p=0.5
D. n=5,p=0.1
22. 随机变量X服从正态分布,其数学期望为25,X落在区间(15,20)内的概率等于0.2,则X落在区间(30,35)内的概率为( )
A. 0.1
B. 0.2
C. 0.3
D. 0.4
23. 如果随机变量X服从标准正态分布,则Y=-X服从( )
A. 标准正态分布
B. 一般正态分布
C. 二项分布
D. 泊淞分布
24. 设随机变量X和Y的方差存在且不等于0,则D(X+Y)=D(X)+D(Y)是X和Y( )
A. 不相关的充分条件,但不是必要条件
B. 独立的充分条件,但不是必要条件
C. 不相关的充分必要条件
D. 独立的充要条件
25. 设随机变量X和Y相互独立,X的概率分布为X=0时,P=1/3;X=1时,P=2/3。Y的概率分布为Y=0时,P=1/3;Y=1时,P=2/3。则下列式子正确的是( )
A. X=Y
B. P{X=Y}=1
C. P{X=Y}=5/9
D. P{X=Y}=0
华师《概率统计A》在线作业
二、判断题(共 25 道试题,共 50 分。) V 1. 在某多次次随机试验中,某次实验如掷硬币试验,结果一定是不确定的
A. 错误
B. 正确
2. 若两个随机变量的联合分布是二元正态分布,如果他们是相互独立的则他们的相关系数为0。
A. 错误
B. 正确
3. 若随机变量X服从正态分布N(a,b),随机变量Y服从正态分布N(c,d),则X+Y所服从的分布为正态分布。
A. 错误
B. 正确
4. 有一均匀正八面体,其第1,2,3,4面染上红色,第1,2,3,5面染上白色,第1,6,7,8面染上黑色。现抛掷一次正八面体,以A,B,C分别表示出现红,白,黑的事件,则A,B,C是两两独立的。
A. 错误
B. 正确
5. 随机变量的方差不具有线性性质,即Var(aX+b)=a*a*Var(X)
A. 错误
B. 正确
6. 样本方差可以作为总体的方差的无偏估计
A. 错误
B. 正确
7. 对于两个随机变量的联合分布,如果他们是相互独立的则他们的相关系数可能不为0。
A. 错误
B. 正确
8. 样本均值是泊松分布参数的最大似然估计。
A. 错误
B. 正确
9. 在掷硬币的试验中每次正反面出现的概率是相同的,这个概率在每次实验中都得到体现
A. 错误
B. 正确
10. 若随机变量X服从正态分布N(a,b),则c*X+d也服从正态分布
A. 错误
B. 正确
11. 若 A与B 互不相容,那么 A与B 也相互独立
A. 错误
B. 正确
12. 若两个随机变量的联合分布是二元正态分布,如果他们的相关系数为0则他们是相互独立的。
A. 错误
B. 正确
13. 随机变量的期望具有线性性质,即E(aX+b)=aE(X)+b
A. 错误
B. 正确
14. 置信度的意义是指参数估计不准确的概率。
A. 错误
B. 正确
15. 二元正态分布的边缘概率密度是一元正态分布。
A. 错误
B. 正确
16. 在掷硬币的试验中每次正反面出现的概率是相同的,如果第一次出现是反面那么下次一定是正面
A. 错误
B. 正确
17. 若A与B相互独立,那么B补集与A补集不一定也相互独立
A. 错误
B. 正确
18. 服从二项分布的随机变量可以写成若干个服从0-1分布的随机变量的和。
A. 错误
B. 正确
19. 事件A与事件B互不相容,是指A与B不能同时发生,但A与B可以同时不发生
A. 错误
B. 正确
20. 如果随机变量A和B满足D(A+B)=D(A-B),则必有A和B相关系数为0
A. 错误
B. 正确
21. 袋中有白球b只,黑球a只,以放回的方式第k次摸到黑球的概率与第一次摸到黑球的概率不相同
A. 错误
B. 正确
22. 两个正态分布的线性组合可能不是正态分布
A. 错误
B. 正确
23. 在某一次随机试验中,如掷硬币试验,概率空间的选择是唯一的
A. 错误
B. 正确
24. 对于两个随机变量的联合分布,两个随机变量的相关系数为0则他们可能是相互独立的。
A. 错误
B. 正确
25. 样本平均数是总体期望值的有效估计量。
A. 错误
B. 正确
|
|